Animal Breeding and Biotechnology

1. Animal Genetics:

- 1. 1. Animal cell and cell division
- 1.2. Gametogenesis: spermatogenesis and oogenesis
- 1.3. Chromosomal study: karyotyping, chromosomal variation and abbretation
- 1.4. Mendalian genetics: experiment, principle and extension
- 1.5. Gene interaction and epitasis
- 1.6. Linkage, crossing over, recombination and gene mapping
- 1.7. DNA and its structure, DNA replication, transcription, translation and expression
- 1.8. Proteins and Gene regulation
- 1.9. Population genetics: gene frequency, Hardy Weinberg law, causes of changing gene and genotypic frequency in the population
- 1.10. Quantitative genetics: Phenotypic variation, estimation of heritability and repeatability

2. Principles of Animal Breeding

- 2.1. Introduction, history and importance of animal breeding
- 2.2. Animal genetic resources and sustainable development
- 2.3. Importance of indigenous breed and economic values.
- 2.4. Rare breeds of different species of animals and their characteristics
- 2.5. Reasons for being endangered, strategies for conservation.
- 2.6. Variation and causes of variation
- 2.7. Importance of heredity and environment
- 2.8. Gene action (additive and non-additive)
- 2.9. Concept of heritability and repeatability
- 2.10. Selection (principle, basis, method, selection parameters)
- 2.11. Mating system (inbreeding, out breeding)
- 2.12. Important Economic traits of livestock and poultry
- 2.13. Breeding values, dominance and epistasic values
- 2.14 Inbreeding: coefficient of inbreeding and relationship, measure of inbreeding and relationship, resemblance among relatives.
- 2.15 Development of breed, strain, lines and family.

3. Animal physiology and reproduction

- 3.1 Concept of growth and development
- 3.2 Growth and thermal environment
- 3.3 Hormonal mechanism in growth and lactation
- 3.4 Hormonal mechanism in reproduction
- 3.5 Male and female reproductive system
- 3.6 Estrus detection and estrus cycle
- 3.7 Estrus induction, estrus synchronization
- 3.8 Ovulation.
- 3.9 A.I. introduction, advantage and limitation of A.I.
- 3.10 Technique of A.I.,
- 3.11 Method of semen collection,
- 3.12 Dilution, preservation, thawing, transportation.
- 3.13 Embryo transfer, importance, techniques
- 3.14 Super ovulation, collection, synchronization
- 3.15 Transfer of embryo.

4. Molecular Biology

- 4.1 Introduction of basic molecular biology
- 4.2 Isolation of DNA and RNA, radiolabelling of nucleic acids
- 4.3 Nucleic acid hybridization, Gel electrophorosis,
- 4.4. DNA sequencing
- 4.5. Restriction enzymes, DNA modifying enzymes and DNA ligase
- 4.6. Host cell types, plasmid, bacteriophage and other vectors,
- 4.7. Cloning strategies: cloning from mRNA, genomic DNA
- 4.8. Expression of cloned genes
- 4.9 The polymerase chain reaction
- 4.10. Selection, screening and analysis of recombinants
- 4.11 Analysis of gene structure and function, making proteins
- 4.12. Transformation of genes

5. Biotechnology

- 5.1 Transgenic animal production and its role in genetic improvement
- 5.2 Molecular breeding approaches in domestic animals
- 5.3 Recent advances in AI, ET, NT.
- 5.4 Genetic principle of diseases resistance and gene therapy
- 5.5 Animal biotechnology in Nepal
- 5.6 Genetic progress achieved through biotechnological approaches

6. Cattle and Buffalo Breeding:

- 6.1 Different mating systems for milk production of cattle and buffalo
- 6.2 Different mating systems for meat production in buffalo
- 6.3 Selection for genetic improvement of milk production from cattle and buffalo
- 6.4 Selection for genetic improvement of meat production in buffalo
- 6.5 Prepare of breeding plan for milk production in cattle and buffalo
- 6.6 Prepare of breeding plan for meat production in buffalo
- 6.7 Use of biotechnology for genetic improvement of cattle and buffalo for milk production
- 6.8 Use of biotechnology for meat production in buffalo.
- 6.9 A I and embryo transfer in cattle and buffaloes

7. Sheep and Goat Breeding:

- 7.1 Different mating systems for wool production in sheep
- 7.2 Different mating systems for quality pasmina production in changra goat
- 7.3 Different mating systems for meat production in goat
- 7.4 Selection for genetic improvement of wool production in sheep
- 7.5 Selection for genetic improvement of Pasmina production in changra goat
- 7.6 Selection for genetic improvement of meat production in goat
- 7.7 Use of biotechnology for genetic improvement of wool production
- 7.8 Use of biotechnology for genetic improvement of meat production
- 7.9 A I and embryo transfer in sheep and goat

8. Pig Breeding:

- 8.1 Genetic principles of pig breeding
- 8.2 Breeding plans based on selection and commercial breeding program in swine
- 8.3 Causes of evaluation; selection methods; breeding systems of pig
- 8.4 Genetic control population and inbred line development and maintain
- 8.5 Useful aids in selection; selection based on sib and own performance
- 8.6 Organized crossbreeding for commercial breeding
- 8.7 Meat production traits; body size and carcass traits
- 8.8 Inheritance of external traits; color and sex, inheritance in swine
- 8.9 Use of molecular genetics and biochemical polymorphisms in pig breeding
- 8.10 Genetic engineering in pig breeding and development of transgenic pig
- 8.11 Breeding pig for diseases and parasites resistance.

9. Poultry breeding:

- 9.1 Genetic principles of poultry breeding
- 9.2 Mating system and selection criteria breeding for chicken meat and egg production
- 9.3 Inbred lines are developed and maintained in poultry
- 9.4 Utilize *dw* (dwarf gene) for broiler production. The effect of dwarf gene on economic performance of poultry.
- 9.5 Intra population selection schemes in poultry
- 9.6 Diallel crossing
- 9.7 The egg production characters of laying poultry.
- 9.8 Random sample test and is important in poultry research.
- 9.9 Breeding plan for meat and egg production in poultry
- 9.10 Formation and maintenance of control population of poultry
- 9.11 The disease resistance mechanism in poultry

10. Lab animal breeding:

- 10.1 Lab animals and their breeding, handling and uses
- 10.2 Selection parameters, principles, methods, basis and genetic effect of selection.
- 10.3 Effective Selection procedure for genetic improvement of lab animals